Simultaneous measurement of 10,000 protein-ligand affinity constants using microarray-based kinetic constant assays.
نویسندگان
چکیده
Fluorescence-based endpoint detection of microarrays with 10,000 or more molecular targets is a most useful tool for high-throughput profiling of biomolecular interactions, including screening large molecular libraries for novel protein ligands. However, endpoint fluorescence data such as images of reacted microarrays contain little information on kinetic rate constants, and the reliability of endpoint data as measures of binding affinity depends on reaction conditions and postreaction processing. We here report a simultaneous measurement of binding curves of a protein probe with 10,000 molecular targets in a microarray with an ellipsometry-based (label-free) optical scanner. The reaction rate constants extracted from these curves (k(on), k(off), and k(a)=k(on)/k(off)) are used to characterize the probe-target interactions instead of the endpoints. This work advances the microarray technology to a new milestone, namely, from an endpoint assay to a kinetic constant assay platform. The throughput of this binding curve assay platform is comparable to those at the National Institutes of Health Molecular Library Screening Centers, making it a practical method in screening compound libraries for novel ligands and for system-wide affinity profiling of proteins, viruses, or whole cells against diverse molecular targets.
منابع مشابه
Measurement of Affinity Constant of Anti-human IgG Monoclonal Antibodies by an ELISA-based Method
Background: The affinity of an antibody to its antigen is a crucial parameter in its biological activity and performance of an immunoassay such as ELISA. Affinity of most IgG specific MAbs are often determined by methods which require labeling of either antigen or antibody, and are sometimes difficult to control, do not always lead to the expected signal and often result in immunological modifi...
متن کاملTransition state thermodynamic analysis using Biacore T 100 Providing information crucial for predicting molecular recognition and structure - based drug design
Biomolecular interactions may be defined at several levels. The simplest quantitative descriptor, affinity, is defined by the affinity constant, KD, a measure of the strength of binding at equilibrium. This term may be further resolved into kinetic descriptors of rate of association (defined by the association rate constant (ka) and dissociation (kd). Kinetic information, however, does not reve...
متن کاملExperimental Measurement and Kinetic Modeling of Ethane Gas Hydrate in the Presence of Sodium Dodecyl Sulfate Surfactant
 Abstract: In this work, the kinetics of ethane hydrate formation has been studied experimentally and a kinetic model based on chemical affinity has been described for predicting the hydrate growth process in the stirred batch reactor at a constant volume. The experiments were done with both pure water and aqueous solution of sodium dodecyl sulfate (SDS). The effect of SDS on formation kineti...
متن کاملProtein microarray technology.
This review summarizes the major activities in the field of protein microarray technology. A short summary of the theoretical concepts of miniaturized ligand binding assays explains why such microspot assays represent the most sensitive approaches for capture-target assays. The main focus of this review is centered on the applications using miniaturized and parallelized protein binding assays w...
متن کاملUse of affinity capillary electrophoresis to determine kinetic and equilibrium constants for binding of arylsulfonamides to bovine carbonic anhydrase.
Affinity capillary electrophoresis (ACE) provides a new approach to studying protein-ligand interactions. The basis for ACE is the change in the electrophoretic mobility of the protein when it forms a complex with its ligand. This binding interaction can be quantified directly for charged ligands or indirectly for neutral ligands in competition with a previously characterized charged ligand. De...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Assay and drug development technologies
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2012